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It is well known that complex analysis has various applications in applied
sciences. But for many physical systems, we cannot get the explicit form of
the solutions and have to construct approximating functions from the given
conditions. We know that a function which maps conformally a simply
connected domain D onto the unit disc U satisfies an integral equation of the
first kind on the boundary of D [7, 10]. If we solve the integral equation by
numerical methods, we obtain a finite set of boundary values of the approx
imating mapping function; therefore the problem is how to construct an
approximating function from the given data.

It seems natural to construct an approximating function using inter
polating Lagrange polynomials. But Fejer 16] pointed out that "There is a
function f(z) regular in the open disc Iz I < I and continuous in the closed
disc Iz I< I such that the sequence {y;'(f, z)} 7 of Lagrange interpolating
polynomials for equidistant interpolating points on IZ I= I diverges at the
point Z = I; more exactly, limn~oo y;'(f, 1) = 00."

If an approximation to an analytic function f is required to high accuracy,
then we suggest using complex spline functions. Applying the Poisson
integral formula, we can construct a complex harmonic spline which gives a
good approximation to an analytic function on the closed unit disc [j [4 J.

First we have to search for a complex spline which approximates the
analytic function on the unit circle r.

We could use the interpolating complex splines with equidistant knots.
The existence and uniqueness of such splines are proved by many authors
11,9, 11 J. However, if the function to be approximated oscillates rapidly on
some parts of r (or its image curve has large curvature on some parts), we
would !.ike to be able to adjust the knots of the interpolating spline function.
The existence of an interpolating spline with arbitrarily spaced knots is
proved only for the case n <3 121.

Here we introduce the so-called complex quasiinterpolating splines which
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give an efficient approximation of high accuracy to an analytic function
onTo

Our approach is related to the papers of de Boor and Fix [5], and Lyche
and Schumaker [8]. However, in comparison with the real case, some parts
of the proofs must be changed, because some theorems and techniques used
in the real case are unavailable in complex analysis.

1. NOTATrONS AND DEFINITIONS

Let r be the unit circle, Ll: Z 1"'" ZM be points arranged on r in counter
clockwise order, and y;'(Ll) denote the family of complex splines of degree n
with knots Ll. If S E y;'(Ll), then S satisfies the conditions: (i) S E 7rn on Yj'
j = 1, M, and (ii) S E Cn-I(T), where 1rn denotes the family of polynomials

of degree nand Yj denotes the circular arc z7ZH l'

Let I a•b denote a circular are, with end points za' Zb; za =I- Zb' If a point Z

runs in counterclockwise order from Za to Zb' then Z describes the arc I a,b'
Suppose t p t z belong to Ia,b; then t l <1i t z means the point Z runs in counter
clockwise order starting from point Z a' meets point t, first, then point t z. In
such a manner, we can also write t z ~ t 1 •

Evidently we can distinguish the order of any two points t I' t Z on I a ,b' but
this is possible only if Za =I- zb; in other words, I a.b cannot be a contour. For

S, Z E II,I+n+ I (=Z):I+ n+ I), we define

(S-Z)~ =(S-z)',

=0,

S~Z,

S <1i Z or S = Z,

where I is any non-negative integer. For any positive integer k, we define the
basic spline functions of order k as follows:

Ni,k(z) = (Zi+k - ZJIZi"'" Z'+k )s(S - Z):-I,

=0,

Z E Ii,i+k'

Z E !\Ii,i+k'

i = 1, M. Here [ZI'"'' ZI+klJ is the divided difference of the kth order of f
with respect to points Z i , ... , Z1+k' (If i + k = M + j, j? 0, we deote
Zi+k = Zj.) We then call Ni,k the complex B-spline of order k.

Evidently, N1,n+ I is a polynomial complex spline of degree n, i.e., Ni.n+ IE

Yn(Ll).
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2. SOME PROPERTIES OF COMPLEX B-SPLINES

There are some important properties of comples B-splines; we list them
below.

[PI] Ni,(z) = 1,

=0,

Z E I i •i + 1 ,
(I)

i+n+j
Ni,n+ (z) = .L CuCz - Zj):,

j~i

=0, zEI\Ii,i+n+I'

(2)

Z-Zi zi+n+l- z
Ni,n+I(Z) = Ni,n(z) + N i+I,n(z), (3)

zi+n - Zj Zj+n+ 1- Zi+ 1

[P2] {Nj,n+I}{:j are linearly independent on Ij+n,j+r+1 for r~n.

[P3] {Nj,n+df=l forms a basis of y;'(L1).

IP4] Given A I'"'' AM (=A), define

__Z_-_Z--,j__A V~ ll(z)
Zi+n+ 1~j - Zi

+ Zi+n+(_j-Z AV-11(Z)
i-I '

Zj+n+ I~.i - Zj

j=O,

j > 0, j = 0,... , n.

(4)

If S(Z) = Lf= I AjNj,n+ (z), then S(z) = Lf= 1 AV1(z) Ni,n+ 1-.i(Z), If j = n,
then S(z) =Alnl(z), Z E I u +I' We stipulate AVI =A1P, j = 0,..., n.

IP5]
M

'\' ;:~,,~ IlN. (z) = Z,,-I
........ '-:" l.n+ 1 ,
i=l

v=I,...,n+l, (5 )

where ~lol=l, i=l,M, ~ll'~I)=(-I)I'-I«v~l)!/n!)\p?+l~")(O) and

'Pj(z) = (z - Zi+I)'" (z - Zj+n)'

The proof of these properties is similar to that for the real case 15,81·

3. RESULTS

We assume that the length of each interval Ji•i + n + I is less than 11:

IIi .i+n+ II < n (i = I, M), and that Zi+M = Zi (i = I, M).
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LEMMA 1. (a) Ns,n+l(Z)*O,zEIs,s+n+l'

(b) INs,n+ l(z)l:( 2\ z E r.
Proof Let z' = ze ilJ , z; = zje ilJ , j = 1, M, where 0 is a real number 0:(

O:(n. If Nsn+1(z') denotes a complex B-spline of degree n with knots
z; ,..., z;+n+ I: we have Ns,n+ l(Z) = Ns,n+ I(Z'), We thus conclude, the values
of a complex spline do not change under a rotation. Therefore, we may
suppose that the point z = 1 does not belong to the support of N"n+ I(Z), i.e.,

1 E !\Is,n+l+s'
Under the transformation Z = (x - i)/(x + i), we obtain

s+n

Ns,n+ l(Z) = Bs,n+ I(X) I r (xk + i)/(x + W,
k~s+l

where Bs,n+ l(X) is a real B-spline of degree n with real knots lX;fj+;+ I, xi =
i«1 + zj)/(l - Zj))' From (6) we obtain (a).

By [P 11, (3) and the information in the introduction we have (b). Q.E.D.

Hereafter, ia'b denotes the closure of la,b'

From Lemma 1(b) and the definition of the complex B-spline we have the
following:

LEMMA 2. For Z E Ii,i +n+I' we have

r = 1, n,

where

1 :(!1 :( r, r :( n,

Now define an operator If as follows. Its domain is en - I (r) and it
satisfies the following two conditions:

M

If(g) = ~ (L j g) Nj,n+ l' Vg E cn-1(r),
j= I

L.(g) = "\' T. g(r)(t.)
1 _ l,r 1 '

r<,n
j=I,M, t;EI;..i+n+l'

(7)

where Tj,r are constants, and g<rl is the rth derivative of g with respect to z.
Following the idea described in the real case [5, 81, we have the following

important and basic theorem about the operator 5/:
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THEOREM 1. Let lE be the operator defined by (7). If anyone of the
following three propositions (A), (B), (C) is valid, then the other two are
true.

(A) lE(S) = S,for any S E ~(L1).

(B) Lj(Ni,n+l) = Ju' i,j= I,M. (Ju is Kronecker delta.)

(C) Tj,r=«-1)n-r/nl)A.y- rl(tj), r=O,n, j=I,M, with A.j(z)=
n{~j+ I (Zk - z), tj E I j •H n+ I'

The proof of this theorem is similar to that in [5, 8] (see [3 D.
Hereafter, we stipulate that the operator lE of the form (7) satisfies one of

the three conditions (A), (B) and (C), hence all.

COROLLARY. lE(P) = P, for all P E Jrn := the family of polynomials of
degree n.

We now study the error of the quasiinterpolation procedure.
Let E = lEU) - f. YJ = L~=o f(r)(z)(. - z)'/r! E Jrn, f = YJ +R z •

Evidently, we have

E (S)( ) = dS(lE(R z»
z dz s '

(8)

In the complex case, we should use the integral representation for the
remainder Rz(t) instead of the Lagrange formula. We then have

or

I flR~r)(t) = R~n)(1])(t _1])n-l-r d1]
(n - 1 - r)! z

f(n)-absolutely continuous on r

1 flR(r)(t) = R(n+ l)(1])(t _1]y-r d1]
z (n _ r)! z z

f(n+ Il-continuous on r.

(0 ~ r ~ n),
(9)

(10)

If the arc length ltil is less than Jr, by geometry we have

We suppose all the arc lengths lii.i+n+ 1 \ are less than Jr, i = 1, M.
From Lemmas 1 and 2, (8), (9), (10), (11) we have:

(11 )



SPLINES ON THE UNIT CIRCLE 317

THEOREM 2. Let pn) be absolutely continuous on r. Let !:J? be the
operator defined by (7) satisfying one of the three conditions (A), (B) and
(C). Let tj E ~+A,j+n+ I-A ,for A= l(n + 1)/2 j. If E := !:J?(f) - f, then

IE(s>Cz)1 ~ Ksw(f(n); ILl I) ILlln- s, 0 ~ s ~ n,

ILlI= max IZj+I-zjl, w(g,h)= sup Ig(t l )-g(t2)1. (12)
I'U<;M 1I,-I,I<;h

11,I,Er

If s ~ l(n + 1)/2 j, then K s is a constant independent of the mesh ratio fJ (see
(14')).

THEOREM 3. If pn) satisfies a Lipschitz condition of order a
(0 < a ~ 1), If(n)(zl) - f(n)(z2)1 < D IZI - z2l u

, then

(13)

If s ~ l(n + 1)/2 j, then Js is a constant independent of mesh ratio.

THEOREM 4. If j(n+ I) is continuous on r, then

(14)

If s ~ l(n + 1)/2 j, Ps is a constant independent of mesh ratio.

We now estimate the constants K s' Js and Ps in (12), (13) and (14),
respectively.

Let

(14')

From (8), (9), (10), (11) and Lemma 2, through elaborate calculations we
have:

THEOREM 5. The numbers KS' Js' Ps in Theorems 2, 3, 4 can be
estimated as follows. For s ~ A,

n [n (n+2) JKS<T T -2- +1 CS,I'

n (n+2)U
J s <T -2- Cs,I'

n
Ps < 4n (n + 2) CS• I ,

(15)

(16)

(17)
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while for s > A, we have

HAN-LIN CHEN

7C [7C (n+2) 1K s <2 2 -2- + 1_ Cs ,2'

7C (n+2)'"is <2 -2- C,,2'

7C

Ps < 4(n + 1) Cs,2'

where

(18)

(19)

(20)

CS,1 = (n + 1) n[n(n + 1 - s)]n-s 2n+s/(n - s)!, (21)

Cs,2 = (n + 1)2Gn + 1 - st 2nps/[(n - s)! (n + 1 - sY], (22)

where fJ is the mesh ratio (see (14')), a is the exponent in the Lipschitz
condition (Theorem 3).

COROLLARY. If n is fixed, let 1.11---.0; then :f(f) converges uniformly to
fonT.
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